Quadratic Pseudo-Boolean Optimization(QPBO): Theory and Applications At-a-Glance

> Presented By: Ahmad Al-Kabbany

Under the Supervision of: Prof.Eric Dubois

12 June 2012

Outline

- Introduction
- The limitations of graph-cuts (GC)
- QPBO theory and properties
- What are we now able to do?
- Some results from the literature
- On-going work
- Key resources on QPBO

Capabilities

Results

On-going

Work

Kev

Resources

Labelling problems in IP and CV

QPBO

- Intensities (restoration)
- Disparities (stereo)

GC Limitations

- Motion vector components (optical flow)
- Objects/surfaces (segmentation)

Introduction

Capabilities

Results

QPBO

On-going

Work

Key

Resources

Introduction

GC Limitations

Capabilities

Results

On-going

Work

Kev

Resources

Labelling problems in IP and CV

QPBO

- Intensities (restoration)
- Disparities (stereo)

GC Limitations

Introduction

- Motion vector components (optical flow)
- Objects/surfaces (segmentation)
- Formulated as optimization problems
 - Minimizing a certain energy function
 - Approximate inference on graphical models
 - Markov random fields

Work Resources Work Work Resources

Capabilities

Results

On-going

Kev

The Markovian Property $\longrightarrow P(x_p/x_{s-p}) = P(x_p/x_{N-p})$

GC Limitations

Introduction

Gibbs-Markov random field model

QPBO

- Neighbourhood system
 - Defined on a sampling structure Γ , a subset of Λ
 - Given a site "x" in Γ , and N_x a subset of Γ
 - $\{N_x, x\}$ is a valid neighbourhood system if:
 - "x" doesn't belong to its neighbourhood
 - If "y" is in N_x then "x" is in N_y

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
ResourcesWhere am linthe literature?

Prof.Eric Duboi's notes of ELG5378-Image Processing and Communications

Results

On-going

Work

Kev

Resources

A clique "c" is a subset of *Γ*, such that either:

Capabilities

"c" is a single site in Γ, or

QPBO

For all pairs of points (x,z) E "c", x E N_z

Introduction

GC Limitations

Capabilities

Results

On-going

Work

Key

Resources

Introduction

GC Limitations

QPBO

Capabilities

Results

On-going

Work

Kev

Resources

Graph cuts in IP and CV

GC Limitations

Introduction

- A type of combinatorial optimization
- Discrete label space
- Graph theoretical concepts

QPBO

- Flow network with set of vertices V and set of arcs A, each has a capacity
- Two terminal nodes; a source and a sink
- Vertices are pixels, terminal nodes are labels
- A cut on a graph and the cut cost

- The min cut
- The max flow/min cut theorem
- Max flow/min cut optimization (to minimize E)
- The the main idea
- The roadmap
 - Construct the graph
 - Compute the max flow and the min cut
 - Assign labels based on the min cut

Optimization with GC

Capabilities

QPBO

GC Limitations

Results

On-going

Work

Key

Resources

$$E(x) = \sum_{p \in V} \theta_p(x_p) + \sum_{(p,q) \in V} \theta_{pq}(x_p, x_q)$$

Introduction

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
Resources

Optimization with GC

- Binary problems, exactly solvable, but...
- Multi-label problems
 - Near global optimum solutions
 - Move making algorithms ("Bianry-zing" the problem)
 - Approximate energy minimization iterative algorithms
 - α -expansion move (retain the label or change to α)
 - α-β swap move (work with pairs of labels, swap or not based on what it now has)

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
Resources

Optimization with GC

A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors R.Szeleiski, R.Zabih, D.Scharstein, O.Veksler, V.Kolmogorov, A.Agarwala, M.Tappen and C.Rother

What is the problem with GC ?

Capabilities

Results

On-going

Work

Kev

Resources

- What energy functions can be minimized?
- Binary and Multi-label MRF optimization

OPBO

 The graph depends on the exact form of the potentials and the label space [1]

Introduction

GC Limitations

What is the problem with GC ?

Capabilities

Results

On-going

Work

Key

Resources

$$E(x) = \sum_{p \in V} \theta_p(x_p) + \sum_{(p,q) \in V} \theta_{pq}(x_p, x_q)$$

Theorem 4.1 (\mathcal{F}^2 **Theorem).** Let *E* be a function of *n* binary variables from the class \mathcal{F}^2 , i.e.,

$$E(x_1, \dots, x_n) = \sum_i E^i(x_i) + \sum_{i < j} E^{i,j}(x_i, x_j).$$
(6)

Then, E is graph-representable if and only if each term $E^{i,j}$ satisfies the inequality

$$E^{i,j}(0,0) + E^{i,j}(1,1) \le E^{i,j}(0,1) + E^{i,j}(1,0).$$
 (7)

Introduction

GC Limitations

QPBO

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
Resources

What is the problem with GC ?

Sub-modularity

 $\theta_{pq}(0,0) + \theta_{pq}(1,1) \le \theta_{pq}(0,1) + \theta_{pq}(1,0)$

- The multi-label case $\min_{\mathbf{y}} E(\mathbf{x})$ where $x_m = (1 - y_m)x_m + y_m \alpha$
- Truncated GC (image stitching)

What is the problem with GC?

What is the problem with GC?

Introduction

GC Limitations

QPBO

What is the problem with GC ?

Capabilities

Results

On-going

Work

Key

Resources

What is the problem with GC ?

Capabilities

Results

QPBO

Graph cut-based optimization for MRF's with truncated convex priors Olag Vekseler, CVPR, 2007

On-going

Work

Key

Resources

Introduction

GC Limitations

Capabilities On-going Work Resources What is the problem with GC?

QPBO

α-expansion move

range move

Results

Introduction

GC Limitations

Key

What is the problem with GC ?

Capabilities

GC Limitations

QPBO

Results

On-going

Work

Key

Resources

with truncation (NP hard optimization)

DiscreteModels:Optimization and Appliactions Arsten Rother, Microsoft Summer School of Computer Vision, Russia, 2011

Introduction

What is the problem with GC ?

- The priors that suit the application the most
- What we are modelling
 - Higher-order clique potentials
- The framework of the optimization problem (learning)

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
Resources

QPBO Theory

Why Pseudo-Boolean?

- Boolean domain and real range; i.e. $f : \mathbb{B}^n \mapsto \mathbb{R}$
- The multi-linear polynomial form

$$f(x) = \sum_{i} a_{i} x_{i} + \sum_{i < j} a_{ij} x_{i} x_{j} + \sum_{i < j < k} a_{ijk} x_{i} x_{j} x_{k} + \dots$$

Why Quadratic?

Degree of f is the degree of the polynomial

$$E(x) = \sum_{p \in V} \theta_p(x_p) + \sum_{(p,q) \in V} \theta_{pq}(x_p, x_q)$$

Introduction	GC Limitations	QPBO	Capabilities	Results	On-ថ W	going ork	F	Key Resources	
		QPE	BO The	ory					
 Ex 	Example:				$f:\mathbb{B}^n\mapsto\mathbb{R}$				
						x		$g(\mathbf{x})$	
						0 0	$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$		
					0	0	1 0	13	
1) 7 (10)	1 1	0 1	1 7	0	0	1 1	4	
$g(x_1, x_2, x_3, x_3)$	$(x_4) = 5x_1 + 15x_3 - $	$4x_1x_3 - 4x_2$	$x_3 - 9x_3x_4 + 4x_5$	$x_1x_2x_3 + 7x_1x_2x_4$		1 1	$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array}$		

 $\mathbf{5}$

 $\mathbf{5}$

 $\mathbf{5}$

 $\mathbf{5}$

 $\frac{1}{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

IntroductionGC LimitationsQPBOCapabilitiesResultsOn-going
WorkKey
Resources

QPBO Properties

Function degree reduction

Reduction to quadratic PBO

The optimization of a pseudo-Boolean function can always be reduced in polynomial time to the optimization of a quadratic pseudo-Boolean function.

Rosenberg, I.G. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Operationnelle 17 (1975), 71-74

$$f(x_1, x_2, x_3, x_4, x_5) \stackrel{\text{def}}{=} 5x_1x_2 - 7x_1x_2x_3x_4 + 2x_1x_2x_3x_5$$

$$f^7 = 45x_6 + 45x_7 + 20x_1x_2 - 30x_1x_6 - 30x_2x_6 + 15x_3x_6 - 30x_3x_7$$

$$- 7x_4x_7 + 2x_5x_7 - 30x_6x_7.$$

Higher-order clique reduction to pair-wise potentials

QPBO Theory

- What is a roof dual?
 - Given f is a quadratic polynomial
 - Roof dual vs. floor dual
 - The QPBO method output
- Properties
 - Persistency (Weak Autarky)
 - Partial optimality (Weak Persistency)

A.Al-Kabbany

- Weak Autarky
 - If y is a complete labelling while x is not
 - And if z=FUSE(x,y)
 - E(z)≤E(y)
- Partial Optimality
 - There exists a global minimum labelling x* such that x=x* for all labelled pixels p in x

QPBO Shortcomings

Partial labelling

- Only if non-sub-modularity exists
- Application dependent
- Usually bearable

Ground Truth Ground Truth (zoom) QPBO (0.7s) Graph Cut (0.3s)

What are we now able to do?

- Higher-order clique potentials
 - Modelling rich statistics of natural scenes
 - Graph constructions were known
 - Potentials on cliques of size "n"; e.g. Pⁿ Potts model
 - ex. triple cliques (2nd order smoothness priors)
 - Graphs, in general, are non-sub-modular though
 - Global optimum finders were missing

What are we now able to do?

- The **fusion move** (generalized α-expansion)
 - "Binary-zing" the problem
 - Fusing 2 solutions (proposals) at a time

What are we now able to do?

Capabilities

Results

On-going

Work

Key

Resources

QPBO

SegPln Proposal Generation

GC Limitations

Global Stereo Reconstruction under Second rder Smoothness Priors O.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon

Introduction

$$\theta_{pq}(0,0) + \theta_{pq}(1,1) \le \theta_{pq}(0,1) + \theta_{pq}(1,0)$$

Fusing two solutions is generally non-sub-modular, <u>NO MATTER WHAT PRIORS WE USE !</u>

QPBO Flavours (Fusion Strategies)

As summarized in [8]

QPBO-F	<i>Fix to current</i> : fix unlabelled nodes to 0			
QPBO-L	Lowest energy label: fix unlabelled nodes collectively to whichever of 0 or 1 that gives the lowest energy.			
QPBOI-F	Fix to current and improve : fix unlabelled nodes to 0, and transform this labelling using QPBOI.			
QPBOP	Probe : probe the graph to find the labels for more nodes, as a part of an optimal solution.			
QPBO-R	Lowest cost label per region : split the unlabelled nodes to strictly connected regions and label each SCR(all affiliated cliques) with 0 or 1.			

(% of unlabelled pixels vs. Time per fusion) OR (Number of fusions vs. Energy decrease per fusion)

Inference with triple cliques

Reference Image

Disparity map(1st order prior)

Disparity map(2nd order prior)

Global Stereo Reconstruction under Second rder Smoothness Priors O.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon

Binary texture restoration

Minimizing non-sub-modular functions with graph cuts-a review V.Kolmogorov and C.Rother

Parallelized α-expansion

Solution1; E=2046

Solution2; E=2915

Global Stereo Reconstruction under Second rder Smoothness Priors O.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon

Parallelized α-expansion

Fusion; E=1362

Alpha Expansion; E=1365

Global Stereo Reconstruction under Second rder Smoothness Priors O.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon
 Work
 Resources

 Some results from the literature

Capabilities

Results

Object Stereo

GC Limitations

Introduction

 Fusing colour, depth and 3D connectivity information

OPBO

On-going

Key

Object Stereo-Joint Stereo Matching and Object Segmentation M.Bleyer, C.Rother, P.Kohli, D.Scharstein and S.Sinha

Capabilities

Results

Object Stereo

GC Limitations

Introduction

 Fusing colour, depth and 3D connectivity information

OPBO

On-going

Work

Key

Resources

Object Stereo-Joint Stereo Matching and Object Segmentation M.Bleyer, C.Rother, P.Kohli, D.Scharstein and S.Sinha

Conclusions

- An optimization technique:
 - Capable to deal with non-sub-modularity
 - Capable to simplify general higher-order cliques
 - Capable to fuse solutions
 - Computationally complex
 - May produce incomplete solution

On going work

- Ill-posed problems of new view synthesis
 - Occlusions
 - Proposal management
 - Illumination modelling and shadow detection
 - Object-based NVS
- Real-time QPBO

On going work Experiments - Preliminary Results

Novel view synthesis - Graph Cut

Presentation on Spherical Stereo Nan Brunton et Al., VIVA Lab, 15 July 2011

Resources on QPBO(Publications)

- 1 V.Kolmogorov and R.Zabih, What Enrgy Functions Can Be Minimized via Graph Cuts?
- 2 Boros; Hammer (2002). "Pseudo-Boolean Optimization". Discrete Applied Mathematics
- Hammer, P.L., P. Hansen and B. Simeone. Roof duality, complementation and persistency in quadratic 0-1 optimization. Mathematical Programming 28 (1984), pp. 121-155.
- 4 E. Boros, P. L. Hammer, and X. Sun. Network flows and minimization of quadratic pseudo-Boolean functions. Technical Report RRR 17-1991, RUTCOR, May 1991.
- 5 E. Boros, P. L. Hammer, and G. Tavares. Local search heuristics for unconstrained quadratic binary optimization. Technical Report RRR 9-2005, RUTCOR, Feb. 2005.
- 6 E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of unconstrained quadratic binary optimization. Technical Report RRR 10-2006, RUTCOR, Apr. 2006.
- 7 V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph cuts a review. PAMI, 29(7):1274-1279, 2007.
- 8 C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary MRFs via extended roof duality. Technical Report MSR-TR-2007-46, Microsoft Research, 2007
- 9 P. Kohli, M. Kumar, and P. Torr. P3 & beyond: Solving energies with higher order cliques. In CVPR, 2007
- 10 V. Lempitsky, C. Rother, and A. Blake. Logcut efficient graph cut optimization for Markov Random Fields. In ICCV, 2007.
- 11 O.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon. Global Stereo Reconstruction under second Order Smoothness Priors, CVPR, 2008

Resources on QPBO(Software)

Vladimir Kolmogorov's C++ implementation of different QPBO flavours:

http://pub.ist.ac.at/~vnk/software.html

Oliver Woodford's Matlab implementation of two publications of his that employed QPBO:

http://www.robots.ox.ac.uk/~ojw/software.htm

For related advancements:

http://research.microsoft.com/enus/projects/discoptimcomputervision/default.aspx

Thank you