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= Introduction

= The limitations of graph-cuts (GC)
= QPBO theory and properties

= What are we now able to do?

= Some results from the literature

= On-going work

= Key resources on QPBO
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?
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Labelling problems in IP and CV

Intensities (restoration)

Disparities (stereo)

Motion vector components (optical flow)
Objects/surfaces (segmentation)
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

= Labelling problems in IP and CV

= |ntensities (restoration)

= Disparities (stereo)

= Motion vector components (optical flow)
= Objects/surfaces (segmentation)

= Formulated as optimization problems

= Minimizing a certain energy function

= Approximate inference on graphical models
=  Markov random fields
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

The Markovian Property ~P(x Ix_ )=P(x Ix )

Gibbs-Markov random field model

= Neighbourhood system

= Defined on a sampling structure I, a subset of A
= Given a site “x” in I, and N a subset of I

= {N,x} is a valid neighbourhood system if:

=  “x” doesn't belong to its neighbourhood

“ b}

= If%y"isin N then is in Ny
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

(A) (B) (C)

(D) (E) (F)

Prof.Eric Duboi's notes of ELG5378-Image Processing and Communications
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

= Aclique “c” is a subset of I, such that either:
= “c”isasinglesitein T, or
= For all pairs of points (x,z) € “c”, x € N

First order neighbourhood system Neighborhood

°
e o o
°
°
Cliques: single pixel ®;  horizontal neighbors ® ®;  vertical neighbors

Prof.Eric Duboi's notes of ELG5378-Image Processing and Communications
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

E(x)=2.0,(x )+ 2. 0_(x,.x)

peV (p.qleV

d N

Pairwise Interaction
Unary term term/potential
(observed data) (prior knowledge)
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

= Graph cuts in IP and CV

= Atype of combinatorial optimization
= Discrete label space
= Graph theoretical concepts

=  Flow network with set of vertices V and set of arcs A,
each has a capacity

= Two terminal nodes; a source and a sink
= Vertices are pixels, terminal nodes are labels

= Acuton agraph and the cut cost
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GC Limitations QPBO Capabilities Results On-going Key
Work Resources

Where am | in the literature?

= The min cut

= The max flow/min cut theorem

= Max flow/min cut optimization (to minimize E)
= The the main idea

= The roadmap

=  Construct the graph
=  Compute the max flow and the min cut
=  Assign labels based on the min cut
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source source
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Optimization with GC

= Binary problems, exactly solvable, but...
= Multi-label problems

= Near global optimum solutions

= Move making algorithms (“Bianry-zing” the problem)
= Approximate energy minimization iterative algorithms
= g-expansion move (retain the label or change to a)

= a-B swap move (work with pairs of labels, swap or not
based on what it now has)
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Optimization with GC
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A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors
R.Szeleiski, R.Zabih, D.Scharstein, O.Veksler, V.Kolmogorov, A.Agarwala, M.Tappen and C.Rother
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What is the problem with GC ?

= What energy functions can be minimized?
= Binary and Multi-label MRF optimization

= The graph depends on the exact form of the
potentials and the label space [1]
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QPBO Capabilities Results On-going Key
Work Resources

What is the problem with GC ?

E(x)=2.0,(x)+ 2. 0, (x,.x)

peV (p.qleV

Theorem 4.1 (F* Theorem). Let E be a function of n binary
variables from the class F2, i.e.,

E(mlr °°axn) = ZE(mz)'l'ZE"](fC,,QIJ) (6)
i 1<
Then, E is graph-representable if and only if each term E*J
satisfies the inequality

EY(0,0) + EY(1,1) < EY(0,1) + E“(1,0). (7)
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What is the problem with GC ?

= Sub-modularity
0,4(0,0) +60,,(1,1) < 0,,(0,1) +6,,(1,0)

= The multi-label case
miny F(x) where zp, = (1 —ym)2m + yma

= Truncated GC (image stitching)
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What is the problem with GC ?

0 .
K -K 0 K

vine(a, 6) = |a—f V" (e, ) = min { |o— B, K }
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What is the problem with GC ?
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Introduction GC Limitations

What is the problem with GC ?

Graph cut-based optimization for MRF's with truncated convex priors

Olag Vekseler,CVPR, 2007

A.Al-Kabbany



Introduction GC Limitations

What is the problem with GC ?

a-expansion move range move

Graph cut-based optimization for MRF's with truncated convex priors
Olag Vekseler,CVPR, 2007
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What is the problem with GC ?

No truncation with truncation
(global min.) (NP hard
optimization)
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What is the problem with GC ?

= The priors that suit the application the most
= What we are modelling
= Higher-order clique potentials

= The framework of the optimization problem

(learning)
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Capabilities Results On-going Key
Work Resources

QPBO Theory

Why Pseudo-Boolean?

Boolean domain and real range; i.e. f : B" — R
The multi-linear polynomial form

f(x)=2ax+), a xx + > @, XXX+
i i<j

i<j<k

Why Quadratic?

Degree of f is the degree of the polynomial
E(x)=), 9p(xp)+ > Om(xp,xq)

pEV (p.gleVv
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Capabilities Results On-going Key
Work Resources

= Example:
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QPBO Properties

= Function degree reduction

= Reduction to quadratic PBO

The optimization of a pseudo-Boolean function can always be reduced in
polynomial time to the optimization of a quadratic pseudo-Boolean function.

Rosenberg, I.G. Reduction of bivalent maximization to the quadratic case.
Cahiers du Centre d’Etudes de Recherche Operationnelle 17 (1975), 71-74

def
f(z1, 20,23, 24, 75) = D129 — T 1T2324 + 221202375

f7 = 45x¢ + 4517 + 20129 — 3021206 — 302926 + 152326 — 302327

— 7334337 + 2£U5$7 — 30$6337.

= Higher-order clique reduction to pair-wise potentials
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Capabilities Results On-going Key
Work Resources

= What is a roof dual?
= Given fis a quadratic polynomial
= Roof dual vs. floor dual

= The QPBO method output

= Properties

= Persistency (Weak Autarky)

= Partial optimality (Weak Persistency)

A.Al-Kabbany




Capabilities Results On-going Key
Work Resources

= Weak Autarky

= |f yis a complete labelling while x is not
= And if z=FUSE(x,y)
= E(z)<E(y)

= Partial Optimality

= There exists a global minimum labelling x* such
that x=x* for all labelled pixels p in x
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QPBO Shortcomings

= Partial labelling

= Only if non-sub-modularity exists

..

Ground Truth Ground Truth (zoom) QPBO (0.7s) Graph Cut (0.3s)

= Application dependent

= Usually bearable

example
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Results On-going Key
Work Resources

What are we now able to do?

= Higher-order clique potentials

= Modelling rich statistics of natural scenes

= Graph constructions were known

=  Potentials on cliques of size “n”; e.g. P" Potts model

= ex. triple cliques (2™ order smoothness priors)

= Graphs, in general, are non-sub-modular though

= Global optimum finders were missing
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Results On-going Key
Work Resources

What are we now able to do?

= The fusion move (generalized a-expansion)
= “Binary-zing” the problem
= Fusing 2 solutions (proposals) at a time
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Results On-going Key
Work Resources

What are we now able to do?

SegPIn Proposal Generation
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What are we now able to do?

] ]
n mpn oo olo &
(] oD

04(0,0) +6,,(1,1) < 0,,(0,1) 4+ 6,,(1,0)

Fusing two solutions is generally non-sub-modular, NO MATTER WHAT PRIORS WE USE !




Results On-going Key
Work Resources

QPBO Flavours (Fusion Strategies)

As summarized in [8]

QPBO-F | Fix to current: fix unlabelled nodes to 0

QPBO-L | Lowest energy label: fix unlabelled nodes collectively to whichever of 0
or 1 that gives the lowest energy.

QPBOI-F | Fix to current and improve: fix unlabelled nodes to 0, and transform this
labelling using QPBOI.

QPBOP  Probe: probe the graph to find the labels for more nodes, as a part of an
optimal solution.

QPBO-R | Lowest cost label per region: split the unlabelled nodes to strictly
connected regions and label each SCR(all affiliated cliques) with 0 or 1.

(
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On-going Key
Work Resources

Some results from the literature

= Inference with triple cliques

Reference Image Disparity map(1°** order prior) Disparity map(2" order prior)
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Introduction GC Limitations QPBO Capabilities Results

Some results from the literature

Binary texture restoration
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(d) QPBO (error 16.0)

Minimizing non-sub-modular functions with graph cuts-a review
V.Kolmogorov and C.Rother




On-going Key
Work Resources

Some results from the literature

= Parallelized a-expansion
T | | ml"

el ' &
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Solution2; E=2915
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On-going Key
Work Resources

Some results from the literature

Parallelized a-expansion
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On-going Key
Work Resources

Some results from the literature

= Object Stereo R e

= Fusing colour, depth
and 3D connectivity
information
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On-going Key
Work Resources

= Object Stereo

= Fusing colour, depth
and 3D connectivity
information
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Conclusions

= An optimization technique:
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On going work

= |ll-posed problems of new view synthesis

= QOcclusions

= Proposal management
= |llumination modelling and shadow detection

= Object-based NVS
= Real-time QPBO
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On going work

Experiments - Preliminary Results

Novel view synthesis - Graph Cut
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Resources on QPBO(Publications)

1 V.Kolmogorov and R.Zabih, What Enrgy Functions Can Be Minimized via Graph Cuts?
2 Boros; Hammer (2002). "Pseudo-Boolean Optimization”. Discrete Applied Mathematics
3 Hammer, P.L., P. Hansen and B. Simeone. Roof duality, complementation and persistency in quadratic 0-1

optimization. Mathematical Programming 28 (1984), pp. 121-155.

4 E. Boros, P. L. Hammer, and X. Sun. Network flows and minimization of quadratic pseudo-Boolean functions.
Technical Report RRR 17-1991, RUTCOR, May 1991.

5 E. Boros, P. L. Hammer, and G. Tavares. Local search heuristics for unconstrained quadratic binary optimization.
Technical Report RRR 9-2005, RUTCOR, Feb. 2005.

6 E. Boros, P. L. Hammer, and G. Tavares. Preprocessing of unconstrained quadratic binary optimization. Technical
Report RRR 10-2006, RUTCOR, Apr. 2006.

7 V. Kolmogorov and C. Rother. Minimizing non-submodular functions with graph cuts - a review. PAMI, 29(7):1274-
1279, 2007.
8 C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary MRFs via extended roof duality.

Technical Report MSR-TR-2007-46, Microsoft Research, 2007
9 P. Kohli, M. Kumar, and P. Torr. P3 & beyond: Solving energies with higher order cliques. In CVPR, 2007

10 V. Lempitsky, C. Rother, and A. Blake. Logcut - efficient graph cut optimization for Markov Random Fields. In
ICCV, 2007.

11 0.J.Woodford, P.H.S.Torr, I.D.Reid, A.W.Fitzgibbon. Global Stereo Reconstruction under second Order
Smoothness Priors, CVPR, 2008
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Resources on QPBO(Software)

= Vladimir Kolmogorov's C++ implementation of
different QPBO flavours:

http://pub.ist.ac.at/~vnk/software.html

= QOliver Woodford's Matlab implementation of
two publications of his that employed QPBO:

http://www.robots.ox.ac.uk/~ojw/software.htm

= For related advancements:

http://research.microsoft.com/en-
us/projects/discoptimcomputervision/default.aspx
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Thank you
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